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Abstract 
The study of number patterns is an essential part of learning mathematics; 

however, the shift required from noticing patterns to expressing the patterns 

symbolically may require sophisticated algebraic techniques. The study 

reported on in this article focused on a group of 57 pre-service mathematics 

students in order to explore their interpretations of the mathematical 

symbolism embedded in pattern descriptions as well as their proficiency in 

using this symbolism to generate descriptions of the patterns. Four tasks were 

designed in line with Mason’s theory of variation which asserts that carefully 

structured variation within learning activities can be used to enhance 

learning. The results show that although students were able to produce correct 

responses to the more direct questions, some students could not handle the 

added dimensions of variation. The study identified different strategies used 

by the students to reduce the elements of variation. Many students were 

unable to generate terms of the sequence which contained repeating cycles, 

and also struggled to generate a description of the general term of such 

sequences. It is recommended that such types of sequences may require 

additional scaffolding especially with respect to the use of the modulo n 

function.   

 

Keywords: mathematics education, patterns, dimensions of variation, 

sequences, modulo n, pre-service teachers 
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Introduction  
Noticing generalisation and then attempting to describe these regularities lies 

at the heart of much of mathematics. In fact, Devlin (1997) has described 

mathematics as the study of patterns real or imagined, visual or mental, 

arising from the natural world or from within the human mind.  

Experimenting with number patterns constitutes an important 

resource activity in developing mathematical reasoning. Asking different 

questions about the patterns enables the student to work at different levels of 

mathematical thinking. It can also provide learners with the opportunity to 

engage with mathematical thinking in the sense that the processes we engage 

with when we study patterns is a reflection of what mathematicians do when 

they study mathematics. The process of observing and describing patterns 

using mathematical notation is therefore a fundamental experience in learning 

mathematics. 

It is important for learners as well as mathematics teachers to 

experience these activities with various types of patterns. However, since the 

study of patterns was incorporated into the South African school curriculum 

(DoE 2003) much of the mathematical activity around patterns has been 

centred on the algorithms that can be used to generate descriptions for the 

number patterns; thus the study of patterns has largely been reduced to 

learning and applying these algorithms. For example, with patterns whose 

terms can be described by linear functions there are particular rules for 

finding the general term. By looking at the first difference of a sequence Tn, 

say, with a first difference of d, then the formula for the general term is given 

by Tn = dn+ T0. As with sequences which can be described using a quadratic 

formula, teachers have developed numerous ‘short cuts’ allowing learners to 

find the values of a, b and c in the general expression Tn= an
2
+bn+c. Samson 

(2008) provides a synthesis of various strategies that are used to generalise 

number patterns that can be described using the quadratic formula. 

Zazkis and Liljedahl (2002) comment likewise that the predominant 

pattern-related activity for learners at schools is extending number sequences 

and finding an algebraic expression for the general term; that is, given the 

position of the element in the sequence, the goal is to find the corresponding 

element. Many studies focused on patterns have discussed issues related to 

this type of problem (Samson 2007; 2008; 2011; Lannin 2005; Dindyal 2007; 

Mason, Burton & Stacey 1985). In this study, two of the tasks (1 and 2) are 
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also based on this type of problem, with one of them being based on a 

sequence of repeating cycles of length 3. A further two tasks (3 and 4) are of 

the type where the algebraic description of terms is provided and students are 

asked to generate some of the terms. The task of generating terms from a 

given description has not received much attention in the research literature 

perhaps because ‘the ability to continue a pattern comes well before the 

ability to describe the general term’ (Zazkis & Liljedahl 2002:388). 

Generating elements of a sequence when given a formula should be even 

simpler than continuing the pattern, because it involves substituting values 

into a formula and then computing the result, which could explain why there 

is limited literature on this area of generating terms from a given description. 

In this study, this basic task of generating terms of a sequence whose 

description is provided was raised in two different ways: first by using a 

sequence with repeating cycles and then by using a sequence whose terms 

were described recursively.  

The purpose of this study which was carried out with a group of 57 

pre-service mathematics students was to explore their interpretations of the 

mathematical symbolism embedded in the pattern descriptions as well as their 

proficiency in using this symbolism to generate descriptions of the patterns. 

The four tasks were designed in line with Mason’s theory of variation 

(Scataglini-Belghitar & Mason 2011; Watson & Mason 2006) which asserts 

that carefully structured variation within learning activities can be used to 

enhance learning. 

 

 
Literature Review 
In their book, Thinking Mathematically, Mason, Burton and Stacey (1985) 

elaborated four processes which are central to mathematical thinking. These 

are specialising (turning to examples to learn about the question), 

generalising (moving from a few instances to making guesses about a wide 

class of cases), conjecturing (making a reasonable statement whose truth has 

not been established) and convincing (showing that the conjecture does hold). 

The authors used a variety of activities, many of which were investigations of 

patterns, to illustrate how these processes can be developed by asking 

pertinent questions. Since then many authors have used similar descriptions 

to capture some of the complexities of engaging with patterns. In his study of 
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high school learners who were engaged in pattern identification tasks, 

Dindyal (2007) identified four sequential stages through which successful 

strategies evolved. The first was the direct modelling stage where learners 

used strategies such as counting, drawing or systematically listing the first 

few cases, similar to Mason et al’s. (1985) process of specialising. The 

second stage was the pattern identification stage, which is similar to the 

generalising process described by Mason et al. (1985). Dindyal’s third stage 

was the proof testing stage where students tested their emerging 

generalisation with further cases, and this can be related to the conjecturing 

stage of Mason et al. (1985). The fourth stage in Dindyal’s sequence was the 

generalisation stage where the successful students find the actual rule which 

is, of course, the stage where one needs to formalise what one has found to 

convince others. Samson (2012:8) drew upon these ideas and described 

pattern generalisation as ‘[resting] on an ability to grasp a commonality from 

a few elements of a sequence, and awareness that this commonality is 

applicable to all the terms of the sequence, and finally being able to use it to 

articulate a direct expression for the general term’.  

Both Samson (2011) and Dindyal have cited Lee (1996) who 

identified three types of conceptual obstacles in generalisation: (1) perceptual 

obstacles related to seeing the actual pattern; (2) verbalisation obstacles 

which involve expressing the pattern clearly; and (3) obstacles at the 

symbolisation, which involves using mathematical notation skilfully to 

express the pattern that is observed. In trying to describe some of the 

symbolisation challenges experienced by students, Arcavi (2005) introduced 

the notion of symbol sense as an essential and multifaceted way of working 

with symbols in algebra. He defined symbol sense as the ‘ability to 

manipulate and also to ‘read though’ symbolic expressions as two 

complimentary aspects’ (Arcavi 2005: 43). It also includes the ability to 

select one possible symbolic representation of a situation and if necessary to 

discard it in favour of a more suitable one. Arcavi concedes that using 

symbols as a productive tool to investigate relationships is not easily 

accomplished and requires focused interventions by the mathematics 

educator. In this study the focus was on the problems experienced by pre-

service mathematics education students at the symbolisation level, both in 

expressing the pattern by manipulating symbolic expressions and being able 

to read through and interpret the algebraic symbolism used to describe 

patterns. 
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Dindayal (2007) noted that one of the issues related to symbolisation 

is that students ‘often focus on inappropriate aspects of a number pattern’ 

which may side-track them from arriving at an explicit and appropriate 

generalisation. Another factor that may affect the success of the 

symbolisation process is the strategy that students use to come up with the 

generalisation. Hershkowitz et al. (2002) observed that generalisations could 

be expressed in terms of the step-by-step recursive method or in terms of the 

independent variable. Samson (2011, 2012) focused on embodied processes 

that learners experience when they are engaged in pattern generalisation tasks 

embedded in specific situations modelled by linear sequences. He found that 

the articulation of an algebraic generalisation is complicated by tensions 

between local and global visualisation. A local visualisation is similar to the 

recursive step-by-step method described by Hershkowitz et al. (2002). 

Generating a formula in this case involves looking at how the pattern in the 

new stage has changed from the existing one, by adding or subtracting a 

structural unit into the existing term. A global visualisation is one that tracks 

the behaviour of the independent variable in the different cases of the pattern 

setting and expresses the generalisation in terms of this behaviour. However, 

local generalisations are not always easier than global generalisations. An 

example of this will be illustrated in this article, when the formula for a 

pattern is expressed recursively.   

Zazkis and Liljedahl (2002) explored the attempts of a group of pre-

service elementary teachers to generalise a repeating number pattern. The 

authors found that students’ ability to express generality verbally was not 

accompanied by and did not depend on their use of algebraic notation. There 

was a gap between students’ ability to express generality verbally and their 

proficiency in using algebraic notation. The authors concede that the 

difficulty was related to the task itself consisting of a pattern with repeating 

elements which did not ‘lead to a ‘smooth’ algebraic notation, presented in 

one ‘neat’ formula that connects the element n to its location’ (Zazkis & 

Liljedahl, 2002:399). Repeating patterns have a recognisable repeating cycle 

of elements, and this aspect was a focus of the study by Threlfall (1999). 

Threlfall advocated the varying of some attributes of elements while keeping 

other elements constant in order to add complexity to a repeating pattern. 

Although the numbers themselves did not repeat in the pattern investigated 

by Zazkis and Liljedahl (2002), applying the same transformation to each 

element produced an explicitly recognisable repeating cycle. It was the 
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position of the numbers that formed the repeating cycle of length 8, and the 

authors used the function modulo 8 as a tool to describe how the position of a 

number could be identified based on the output of the function (that is, the 

remainder of the division of the number by 8). It is believed that this study 

will extend the research in the area of symbolisation of patterns with 

repeating cycles.  

 

 
Theoretical Framework 
Being immersed in pattern-spotting and pattern-extension activities 

undoubtedly contributes to learning mathematics. However, Watson and 

Mason (2006) caution that ‘learning does not take place solely though 

learners observing some patterns in their work’ even if they have developed 

generalisations of the patterns. The authors comment that activities such as 

pattern-spotting, generalising and reproducing patterns are just the means by 

which people make sense of experiences and these activities need to be 

carefully planned and sequenced in order to facilitate meaningful learning. 

Watson and Mason (2006) contend that by being exposed to structured or 

structural experiences aimed at exposing underlying mathematical form, 

learners’ ways of working can be shifted to higher levels. The authors 

identify mathematical variation as a scaffolding tool that can be used in 

mathematical activities to shift learners’ thinking towards a more conceptual 

orientation. Watson and Mason (2006) focus on ‘dimensions of possible 

variation’ which refer to ‘features, aspects and parameters that can be 

changed in an object whilst remaining an example of a concept.’  

Watson and Mason have argued that by paying attention to variation 

in the design of tasks, a teacher can provide more structured opportunities for 

learning. As learners move from working with familiar and similar examples 

to not-quite-so-similar tasks, they are shifted to working on higher levels. 

Scataglini-Belghitar and Mason (2011) cite Marton and Booth (1997) who 

defined learning as ‘extensions of dimensions of variation of which a learner 

is aware’. Watson and Mason (2006:97) support Martin and Booth’s 

definition as a means for ‘describing learning, for relating learning to 

mathematical structures as afforded to, and perceived by, learners’. Hence, 

the responses to structured variation provide a means of observing learning. 

For teachers the construction of tasks that use variation and change optimally 
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constitutes an ongoing ‘design project’ which requires constant revision and 

changes based on the observed learning (Watson & Mason 2006:100). 

Herscovics (1989) defined the term ‘epistemological obstacles’ as 

obstacles that are encountered in the development of knowledge in a 

discipline. Learning is enhanced as a person finds ways of overcoming the 

difficulty posed at that point. Didactically speaking, teachers need to identify 

these epistemological obstacles so that they can better help the students to 

move forward. Sometimes it may be the case that the approach taken by the 

teacher may cause further conceptual difficulties for the students. Olivier 

(2013) refers to ‘didactical obstacles’ as difficulties experienced by students 

which may result from the teaching approach employed by the teacher.  

In the study on which this article is based I focused on the 

epistemological obstacles caused by the contrived introduction of 

mathematical variation in the context of sequences in an effort to observe the 

regularities evident in the ways in which the students respond to these 

variations. As the instructor of the module in which this study was carried 

out, I hoped that the identification of these regularities would inform the 

refinement of the study materials so that the didactical obstacles can be 

reduced in future offerings of the module. Hence the study will contribute in 

general to pre-service mathematics teacher education pedagogy. 

 

 
Methodology 
The study utilised an interpretive approach because the main goal of this 

study was to understand the students’ interpretations of reality (Cohen, 

Manion & Morrison 2011) with respect to algebraic problems set around 

sequences. The participants in the study were 57 students out of a class of 59 

who were enrolled on a Real Analysis course for pre-service teachers where 

students study topics in set theory, topology of the real line, number theory, 

proof, and sequences and series. The unit on sequences and series was 

designed to extend the students’ experiences of patterns and sequences 

beyond arithmetic, quadratic and geometric which they encounter at school. 

The unit consisted of many exploratory activities which involved continuing 

sequences, generating terms of sequences whose nth term was provided and 

providing formulae to describe the general terms of various types of 

sequences. A selection of the test items in the module was specially designed 
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both for assessment and research purposes and the four tasks were included in 

a larger module assessment. The analysis of the responses can be regarded as 

content analysis which ‘simply defines the process of summarising and 

reporting written data and their messages’ (Cohen et al. 2011:563). In this 

case the students’ responses are the source of the communication intended to 

convey their engagement with the sequences. The analysis of students’ 

responses to assessments or specially designed tasks for research purposes 

serves as a valuable resource for analysing academic activities. These data 

can be used to provide information about students’ varying engagement with 

particular concepts; the competence of students in the area being assessed; 

the mathematical demands of the task, thus improving the conceptual 

understanding of the researchers doing the analysis; and possible sequencing 

of the teaching of particular concepts. Hence, in such studies, the work of 

teaching strengthens and is in turn strengthened by the work of research.  

The data analysis process involved studying the responses of the 57 

students with a view to understanding firstly the ‘what’, and then the ‘why’ 

and the ‘how’ underlying the data (Henning 2004). Dey (1993:30) describes 

data analysis as ‘a process of resolving data into its constituent components to 

reveal its characteristic elements and structure’. In a similar manner the 

students’ responses were broken down into constituent parts reflecting their 

reactions to those elements of variation identified in the problem setting. This 

was done in order to classify and make connections across the data elements 

(Henning 2004:128). The responses were coded, which means representing 

‘the operations by which data are broken down, conceptualised, and put 

together in new ways’ (Strauss & Corbin 1998:120). Hence, each written 

response was analysed in terms of how the student reacted to the perceived 

dimensions of variation present in the tasks.  

The research question guiding the study was: How do students 

respond to the dimensions of variation in tasks based on sequences? 

One task required students to find a formula for the nth term of a 

sequence. The first task (Task 1) required students to generate terms given 

the formula of the general term. The demand of this basic task of generating 

terms of a sequence was then raised using two approaches. One way of 

raising the demand (Task 3) involved a sequence with repeating cycles, hence 

the position of the term was made dependent on output of the modulo 3 

function. The challenge in this case seems to be that both the term and the 

position were now being varied. A second way in which the task of 
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generating terms of a sequence was made more complex was by providing 

the description in recursive terms, and Task 4 took on this dimension. The 

third task required students to find a formula for the nth term of a sequence 

with repeating cycles of length 3. 

The responses to four tasks are analysed in this article. A detailed 

discussion follows in the next section. 

 

 

Tasks 
Before presenting the tasks, I first discuss the definition of a sequence that 

was used in the real analysis module.  

 

A sequence of real numbers (or a sequence in ℝ) is a function on the 

set ℕ, of natural numbers whose range is contained in the set ℝ of 

real numbers. That is, (an) can be seen as a function f: ℕ → ℝ. 

 

The general way of writing a sequence is a1, a2, a3, a4, …… an, ……, so that 

for each element there is an element of the sequence, an. This means that a 

sequence must be an infinite (not finite) list of terms, though repetition is 

allowed. Such a sequence is denoted by (an) or (xn) or X or (xn: n ϵ ℕ). Note 

that xn or an is the single number denoting a term of the sequence and is also 

denoted by Tn. The independent variable, n, marks the position of the term. 

For example, the fourth term means T4 while the value of the fourth term 

refers to the actual value of T4 or f(4). Sometimes students experience 

difficulties in distinguishing between the position n with the value f(n) or Tn. 

For example, consider the sequence Tn = f(n) =9n +4. When asked: For which 

value of n is Tn equal to 40, say, some take n to be 40, and they find T40, 

instead finding n, when 9n +4 = 40.  

It is important to note that ‘no finite sequence of numbers uniquely 

generates the next term’ (Zazkis & Liljedahl 2002:384) and that a finite array 

of numbers may be extended in a variety of ways. Hence, the questions 

specified a possible formula for the general term and not ‘the’ general 

formula.  

The details of the four tasks are now presented. In each case the 

salient elements of the task are discussed. The detailed interrogation of each 

task that is presented is necessary for the discussion of the results that follow. 
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Task 1 
Write down the first four terms of the 

following sequences, and the tenth 

term 
       

   
   

Solution: x1= ½;    x2=²/3   ; x3=  

¾;  x4= 
 

 
;     

  

  
 

 

 

 

The mathematical skill assessed in Task 1 was the ability to calculate the 

terms f(n) of the sequence, given the description f, and the value n. 

 

 

Task 2 
Find a formula for the nth term of these 

sequences:  

 1, 3, 4, 1, 3, 4, 1, 3, 4, 1,3,4, ………

  

Solution  

xn = (

             
             
             
          ℕ  

) 

 
 

In this task, the demand for using a formula to describe the nth terms has 

been raised by making the sequence one that repeats in strings or cycles of 

three numbers. Hence there are three possible values taken on by terms in the 

sequence depending on the position of the term. The modulo (sometimes 

called modulus) operation which finds the remainder of division of one 

number by another, is used to address the issue of the repeating terms. 

Given two positive numbers, n (the dividend) and a (the divisor), n 

modulo a (abbreviated as n mod a) is the remainder of the Euclidean division 

of n by a. For instance, the expression ‘5 mod 2’ would evaluate to 1 because 

5 divided by 2 leaves a quotient of 2 and a remainder of 1, while ‘9 mod 3’ 

would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and 

leaves a remainder of 0; there is nothing to subtract from 9 after multiplying 3 

times 3. The operation of modulo 3 is one which can be used in this problem. 

The operation results in a partitioning of the set N into three subsets, 

corresponding to the elements which are evaluated to 0, 1 and 2 respectively 

by the operation n mod3. Note that  

 

http://en.wikipedia.org/wiki/Remainder
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Euclidean_division
http://en.wikipedia.org/wiki/Quotient
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           ℕ  

 

 

For discussion purposes I will refer to the expressions 3m+1, 3m+2 and 3m+3 

as g1, g2 and g3 respectively. Furthermore, I will refer to the subsets of ℕ as 

G1, G2 and G3, where ℕ = G1UG2UG3 and 

 
 

 G1 = {nϵ ℕ │n mod3=1}= {1; 4; 7; 10; ….}.  

 G2 = { nϵ ℕ │n mod3=2}= { 2; 5; 8; ….} 

 and G3= { nϵ ℕ│n mod3= 0}= {3; 6; 9; ….} 

 

 

Task 3 
Find the first four terms and the tenth term 

for the following sequence. 

xn   =(

              
                
                

) 

Solution. 

x1=2; x2=2; x3=4; x4=8; 

 

x10=20 

 
 

Here the function defining the sequence is made up of different rules for 

elements from each of the subsets G1, G2 and G3. For the discussion, I will 

refer to the three functions that are applied on the subsets G1, G2 and G3, as f1, 

f2 and f3 where  

 

 

 f1: G1 →ℕ and  f1(n)  = 2n  f2: G2 →ℕ and  f2(n) = 2n-2;    f3:G3→ℕ 

and  f3(n) =2n-2 

 

 

Hence the sequence can be represented as follows. 
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xn  =

(

 
 

                  

        -           

        -           

)

 
 

 

 

 

Task 4 
Consider the sequence defined by x1 = 

8,  and xn+1= xn + (4n-2). 

1. Write down the first four terms of 

this sequence.  

2. Find a formula to describe the nth 

term of this sequence.  

  

 

 

 

Solution.  x1=8; x2=10; x3=16; 

x4=26 

 

 
 

The description of the general term given in Task 4 can be broken up into 

three parts:  

 

 

xn+1= xn + (4n-2) 

 

 

 

The subject   first term  second term on the RHS 

of the formula  on the RHS 

 
 

Thus the formula or function is f(n+1) = xn+(4n-2). When n = 2 say, 

the term on the LHS takes on x3, while the first term on the RHS is x2 and the 

second term of the RHS is (4(2)-2). Although the value of n is being 

consistently substituted, the resulting expression consists of both x3and x2, 

which is a dimension of variation that seems to have created some sort of 

unease. 
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Results 
The students’ responses to the four tasks were first categorised as either 

correct or incomplete or incorrect. The incomplete and incorrect responses 

were then analysed for emerging themes through a general inductive analysis. 

The initial results for the four tasks are summarised in Table 1.  

 

Table 1: Overall results for the four tasks 

Task Number correct Number incorrect or 

incomplete 

1 46 11 

2 31 26 

3 14 43 

4 33 14 

 

As suggested by the results in Table 1, students found Task 1 least difficult 

while Task 3 was most challenging. The details of the results for each task 

follow next. 

 

Results for Task 1  
For this task, most students (46) were able to substitute the five values of n 

and correctly calculate the first four and tenth terms. There were 10 students 

who did not specify the tenth term, but they correctly presented the first four 

terms. One student made a slip with the negative sign on one term. Thus it 

can be said that all the students were able to substitute various values into the 

given formula to generate terms. 

 

Results for Task 2  
There were 26 students who did not produce a correct response for Task 2. 

The key tool for Task 2 was the use of the mod 3 function. That is, they 

needed to identify that the terms of the sequence were appearing in cycles of 

three and therefore the mod 3 function could be used to help them describe 

the values of terms that appeared in certain positions. These students’ 

responses indicate different degrees of struggle with using the mod 3 function 

as a tool.  

Some students tried to generate a general formula that could describe 

all the terms, such as student 29, whose response appears in Figure 3 
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Figure 3: Response of student 29 to Task 2 

 
Figure 3 shows that S29 tried to find one formula to represent all the terms. 

Perhaps this was an attempt to reduce the variation caused by the repetition of 

the terms cycles of three. However he did not succeed with this approach.  

Other students did not ignore the fact that the terms were appearing 

in cycles of the three terms and recognised that the n mod 3 function could be 

used to address this issue. For example, 15 students listed the sets G1, G2 and 

G3. The response from student 24 appears in Figure 4. The student provided a 

description of the elements which belonged to the three sets, as Tn= 3n-2, 

Tn=3n-1, Tn=3n. 

 

 
 

Student 24 

 

Figure 4: Response of S24 to Task 2 
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The responses in Figure 4 show that the students generated 

expressions to describe the elements of the sets G1, G2 and G3. However, 

giving such a description is only a first step to the solution. A further step was 

to specify the values taken on by terms Tn where, n belongs to each of the Gi 

which these students did not get to, but presented the descriptions as formulae 

for the terms, Tn. The neglect of the second step indicates that the students 

did not distinguish between the position n and the value Tn of the terms.  

 

 

 

Results for Task 3  
There were only 14 students who produced the correct answers. I will now 

discuss some of the common trends behind those responses which were 

incorrect. 

There were eight learners who listed the elements of G1, G2 and G3, 

as shown in the response by student 7 in Figure 5. 

 

 
 

Figure 5: Student 7 response to Task 3 

 
This student wrote the elements of the sets G1, G2 and G3. The student 

transformed each of the expressions 3m+1, 3m+2 and 3m+3 into functions g1, 

g2 and g3 respectively where g1(m) =3m+1, g2(m) = 3m+2 and g3(m) – 3m+3. 

That is, he systematically worked out g1(0) = 3(0)+1 =1, by substituting the 
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values m=0, 1, 2 into the expression 3m+1 and generated the values 1, 4, 7, 

….., which are the elements of the set G1. 

He then substituted the values m=0, 1, 2 into the expression 3m+2 (or 

g2), and generated the values 2, 5, 8, etc., which are the elements of set G2. 

Finally he substituted the values m=0, 1, 2 into the expression 3m+3 (or g3), 

and generated the values 3, 6, 9, etc., which are the elements of set G3. The 

student’s response indicates that he took the expressions g1, g2 and g3 as 

functions for calculating the value of Tn. However these are descriptive 

conditions that are satisfied by certain natural numbers, and depending on 

which condition the number satisfies, the number becomes an input of the 

functions f1, f2 or f3, to produce the required term value. 

Some students tried to use the sets of expressions and functions in 

various ways. One of these students was student 3, whose response appears in 

Figure 6. 

 
Figure 6: Response by student 3 to Task 3 

 
It can be seen in Figure 6 that the student considered the three possibilities of 

f1, f2 and f3 separately. She also took the expressions 3m+1; 3m+2 and 3m+3 

as functions g1, g2 and g3. This enabled her to calculate f1ₒg1 (n) for n=1, 2, 3, 

4 and n =10 and she generated the list of values in the top row. Thereafter she 

found f2ₒg2 (n) for n = 1, 2, 3, 4 and n =10 and generated the values in the 

middle row. Finally she found f3ₒg3 (n) for n =1, 2, 3, 4 and n =10 and wrote 

the values in the bottom row. The student generated three sets of terms and 

she did not find a way to coordinate these sets into one sequence. 

 

 

There were three students who wrote the first few terms as 2, 0, 0, 4, 2, 2, as 

shown in Figure 7.    
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 Student 43 

 

 

 

student 8 

 

Figure 7: Responses of students 8 and 43 to Task 3 

 

 
From Figure 7, it seems as if in trying to deal with the cyclic nature of the 

sequence these students tried to hold or pin one quantity down while allowing 

the other to vary. They kept n constant at n =1and found f1(1), then f2(1) and 

f3(1). Then they moved to n = 2 and found f1(2), then f2(2) and f3(2) and 

thereafter moved to n=3 found f1(3), then f2(3) and f3. Moving on to n =4, 

they then calculated the tenth term using n=4, that is T10 = f1(4) = 8. They 
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tried to keep n constant while going through the three functions f1, f2 and f3 in 

turn. 

 

Many of the students (5) produced a repeating sequence, 1, 2, 4, 1,2 4. One of 

these students was student 11, whose response is shown in Figure 8. 

 

 

 
 

Figure 8: Response of student 11 to Task 3 

 

This approach of repeating terms may have been influenced by the 

form of the sequence in Task 1. 

It is important to note that all except four of the 26 students 

whose responses to Task 2 were incorrect did not produce a correct 

response to Task 3. It is possible that their response was incomplete for 

Task 2, but they nonetheless had an understanding of the n mod3 

function which was also a tool used in Task 3.  

The other 22 students whose responses to Task 2 were incorrect 

also gave an incorrect response to Task 3. That is, 85% of those who 

did not produce a correct response to Task 2 were unable to produce a 

correct response to Task 3. There were 11 students who had produced 

a correct description of the terms of the sequence in Task 2 but could 

not do the same for Task 3. It may therefore be surmised that for this 

sample of students Task 3 presented a greater challenge. An 

examination of Task 3 confirms that the demand was increased by the 

introduction of a further dimension of variation. Whereas for Task 2, 

the value of Tn was fixed at 1, 3 and 4 when n was an element of each 

of the three sets G1, G2 and G3 respectively; for Task 3, this was now 

varied further. Instead of fixed values, Tn was now described using a 

different rule for elements from each of the three sets.   
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Results for Task 4 (Question5.3.1) 
In Task 4, the additional dimension of variation is not with the addition of 

new variables but with the variation of the notation of the terms xn and xn+1. 

Whereas in the former the substitution of n results in a term xn, for the latter 

the substitution of the same value of n now results in the subsequent term 

xn+1. 

There were 33 students who found their way around the three 

substitutions of n in the formula and who correctly computed the first four 

terms.  

There were 11 students who produced the response 10, 16, 26, 40. An 

example of this is the response by S5 presented in Figure 9.  

 

 

Actual 

response: 

10, 16, 26 

40 

 

 

 

Effective 

formula  

xn = 

xn+4n-2 
 

Figure 9: Response by S5 to Task 4 

 
These students substituted n=1 in both parts of the formulae on the RHS but 

implicitly took n=0 in the subject of the formula for the first term; similarly 

for the second term they substituted n=2 into the expressions on the RHS and 

implicitly took n=1 in the subject of the formula on the LHS. The response of 

student 5 shows that she took the first term as being different from x1 which 

was given already as 8. She used the x1 as something to be substituted into the 

formula to find the first term of the sequence, and did not take x1 as the first 

term. Similarly, she saw the second term as being a different entity from x2. 

In general, her nth term= xn+4n-2. These approaches have actually changed 

the given formula to xn = xn+4n-2, which is mathematically incoherent and as 
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an equation it has no solution. The misconception here is that n can take on 

different values in one formula, and also that x1 is different from the first 

term. 

Another common misconception is revealed in the responses of nine 

students, who wrote the first four terms as 8, 14, 24, 38. The response of S24 

appears in Figure 10. 

 

 

Response 

8, 14, 24, 

34 

 

 

 

Effective 

formula 

used 

xn+1 = xn 

+4(n+1)-

2 
 

Figure 10: Response of S24 to Task 4 

 
From Figure 10 it can be seen that for the calculation of x2, the student took 

n=1, in the subject of the formula and in the first part of the formula but took 

n=2 in the second part of the formula. Similarly, for the calculation of the 

third term, n was taken as n=2 in the subject and the first part of the formula, 

while it was taken as n=3 in the second part, hence the effective formula was 

xn+1 = xn+4(n+1)-2. 

Some students used an incomplete formula by taking only the second 

part of the formula such as 6, 10, 14, 18 or 10, 14, 18, 22, which can be 

represented as xn= 4(n+2)-2   

One student wrote 8, 10, 12, 14, which was effectively taking xn+1 = 

xn+2. Another variation in the formula was 8, 14, 18, 22, 26, which involved 

adding 4n-2 to 8 and the effective formula was xn+1= 8+4n-2. 

Therefore, for Task 4, the ways in which the students used the given 

formulae resulted in rules that were different from the original formula. Their 
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attempts at trying to reduce the variation resulted in substantial changes to the 

sequences.  

 

 
Discussion 
The responses to the questions show that there were often common strategies 

in the ways in which the students interpreted the pattern descriptions and the 

ways in which they generated patterns whose descriptions were provided. 

These regularities provide an indication of the students’ interpretations and 

use of the symbolisation. The students’ struggles may be related to similar 

struggles experienced with studying rates of change, where the change in one 

quantity is observed with respect to the change in a second quantity. 

Students’ difficulties with examples such as acceleration as the rate of change 

of velocity as the rate of change of distance are well documented (Tasar 

2010; Thompson & Thompson 1994; 1996). Another example of change 

involving two quantities is that of inflation and price of goods (Tasar 2010; 

Bansilal 2011). In the cases considered in this article the changes are 

somewhat different from those observed and described in rates of change, but 

relate to the discomfort of dealing with variation on different levels. Whereas 

with rates of change, there is one dependent variable which is changing with 

respect to a second independent variable. In this study, the changes were 

somewhat different. With Tasks 2 and 3 change was occurring on three 

fronts. There was variation in position, which was dependant on the value of 

n or term number; there was variation in conditions, where n could satisfy 

either of the three conditions, g1, g2 or g3; and then there was variation in the 

formula for computing the term value which could be f1, f2, or f3. With respect 

to Task 4, the variation was in the term taking on the value of xn and xn+1 in 

the same expression. 

One of the demands that the changes or the variations induced was 

that the students’ conceptions were challenged. Without the variations, 

substitution into a formula in mathematics may be a straightforward exercise. 

Usually when the formula is given, one just needs to substitute the given 

value and then carry out the computation using operations on numbers; in 

fact, almost all the students in the class were well able to deal with this 

demand, as revealed in their responses to Task 1. Mason (1989:4), writing in 

the context of learners who are being introduced to algebra, notes that 
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learners can often express a general rule but find it difficult to see the 

expression as an object which can be manipulated or transformed. Mason’s 

theory of shifts implies that ‘they need continued exposure to such acts of 

expressing so that they begin to find it relatively easy’ (Mason 1989:4) so 

that it almost becomes routinised, allowing them to shift their perception 

from seeing it as a formula to seeing it as an object. In terms of Task 4, many 

students were able to use xn in the substitution to calculate the n+1
st
 term, 

using xn as an input into the formula. This was in following a rule as in ‘to get 

the next term substitute the previous term and add 4n and subtract 2’. 

However, the formula required a variation in the role of xn as moving from an 

input for the n+1
st
 term to being an object in its own right as the result of the 

formula for the nth term. The responses show that many could not make the 

shift in the perspective of xn as an object that is the nth term. The variation in 

the role of xn thus constituted an epistemological obstacle, which if passed 

results in extended learning. As a person finds ways of overcoming the 

difficulty posed at the point of the epistemological obstacle, learning is 

enhanced (Herscovics 1989). Students who work with such expressions, and 

develop a dual perspective of xn as an input for the n+1
st
 term while also 

being an object, have become aware of the extension in the dimensions of 

variation of xn (Scataglini-Belghitar & Mason 2011).  

Mason’s theory of shifting one’s perception from seeing a formula as 

an object also adds insight into the case of the n mod3 function that appeared 

in Tasks 2 and 3. In Task 2, many students struggled to move from the 

expressions which specified the positions of terms to specifying the value of 

the terms. Some (15) were able to find a formula to describe the elements 

which belonged to the three sets G1, G2 and G3, or the positions of terms. 

They generated the three lists of n-values which satisfy the three expressions 

related to the outputs of n mod3 function respectively. The generation of 

these lists may have crystallised the operation of n mod3. However, they 

needed a further shift that would have allowed them to see the partitioning 

(G1, G2 and G3) as the result of the operation of n mod3. They struggled to 

shift their attention to seeing these n-values as objects upon which the 

different functions f1, f2 and f3, could operate; hence the added variation of 

the repeated cycles of length three also constituted an epistemological 

obstacle. There were students (22) who did not produce correct answers for 

Tasks 2 and 3. This demonstrates that not making the shift from formula to 

object in Task 2 also hampered them in working with the repeated cycles in 
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Task 3. In order to perform further operations on the elements of the sets G1, 

G2 and G3, it was necessary to have an object-conception of the n mod3 

function. However, the students were stuck in a process conception (Mason 

1989) – they had not moved further than seeing the n mod 3 function as a 

process, so they could not perform further operations on the elements of those 

sets or lists. 

In attempting to deal with the dimensions of variation embedded in 

Task 3, students seemed to be trying to find ways to keep certain quantities 

constant while varying others, as seen in the various responses that were 

presented. The introduction of one set of expressions (g1, g2, g3) for checking 

the position and another set of functions (f1, f2, f3) for evaluating the terms 

(Tn) introduced multiple dimensions of variation that complicated the 

problem. Some students responded by focusing only on the expressions g1, g2 

and g3, and did not consider the functions f1, f2 and f3. Others considered 

expressions g1, g2 and g3 as functions which could operate on the n-values. 

Some considered the composition of the gi’s and fi’s to make up three 

different functions which led to three different sequences. Some kept n 

constant while they cycled through the various fi, and some came up with a 

sequence which had repeating cycles of length 3. It is worth noting that this 

type of pattern with repeating cycles also proved to be challenging in other 

studies. Zazkis and Liljedahl (2002:399) noted that the pattern with repeating 

elements presented difficulties because it did not ‘lead to a ‘smooth’ 

algebraic notation, presented in one ‘neat’ formula that connects the element 

n to its location.’ In their study with 36 pre-service elementary school 

teachers, there were only three teachers who used a strategy related to the n 

mod 8 function supporting my finding that patterns with repeating cycles 

were experienced as very difficult. 

 

 
 

Conclusion 
The study reported in this article was an exploration of pre-service students’ 

responses to induced dimensions of variation in representing sequences. 

These dimensions of variation presented epistemological obstacles to them 

which some tried to overcome by looking for ways to minimise the variation 

by trying to keep some aspects constant. However, the definition used by 

Watson and Mason (2006), that sees learning as an extension of ‘[dimensions 
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of variation that a student is aware of, implies that as students overcome these 

epistemological obstacles their learning will be extended. It is suggested that 

these experiences should be brought to the fore for these students who are 

going to be teachers, so that they can reflect on what made them struggle and 

how this effort contributed to their learning. As teachers the lessons they 

learn from their own learning experiences may help them plan learning 

experiences for their own learners in future.  

In terms of my own introspection, the students’ struggles with the 

concept of the mod 3 function suggest that they may have needed additional 

help. The experience of encountering it for the first time in its role in 

generating and describing repeated cycles of terms in sequences indicates that 

the introduction via this route constituted a didactical obstacle (Olivier 2013). 

Perhaps these repeating sequences needed to be scaffolded first by 

introducing the mod a function first so that students could gain familiarity 

with the operation of modulo a. They may then see the value of the mod a 

function in representing cycles of length a in a sequence.  
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